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Abstract
This paper discusses a model for dissipation in electrical conductors, in which a
time-dependent flux X(t) is threaded through a loop. The rate of dissipation is
proportional to a constant DE characterizing the diffusion of single-particle
energies, and Ohmic dissipation occurs when DE ∝ Ẋ2. The diffusion
constant DE is investigated for a random-matrix model, and compared with
the predictions of the Kubo–Greenwood formula. The results agree with
the Kubo–Greenwood formula in a physically important regime where other
random-matrix models do not show agreement. Numerical experiments also
identified another regime of this model which exhibits Ohmic dissipation, with
a conductance which does not agree with the Kubo–Greenwood formula.

1. Introduction

This paper discusses the validity of the Kubo formula [1], which is used to calculate the
electrical conductance of metallic systems. This is a fundamental issue in the physics of
metals, and is also representative of a general class of problems, in which a complex system
responds to an external force by dissipating energy. The Kubo formula is a term used to cover
a systematic approach to calculating linear response coefficients quantum mechanically, rather
than a specific expression. The derivation uses perturbation theory, and it has been argued [2]
that this is potentially a serious weakness. For example, the limit of validity of perturbation
theory could be exceeded by unphysically small disturbances. The existing literature does not
provide a satisfying answer to this question.

Previous papers [3, 4] have discussed circumstances in which the Kubo formula is shown
to break down by the dissipation becoming non-Ohmic, in that the current ceases to be
proportional to voltage. Reference [3] discusses the parameter regime where dissipation
is determined by Landau–Zener transitions. This case is relevant to large, low-frequency
perturbations of microscopic systems. Reference [4] discussed a case with wider implications.
A random-matrix model was shown to exhibit markedly non-Ohmic response in a regime
where a dimensionless parameter η (which will be defined in section 2) is large. It is this
regime which corresponds to typical physical situations (in which real conductors do show
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Ohmic behaviour). This observation was significant for two reasons. Firstly, random-matrix
models have been so successful in predicting spectral fluctuations (on small energy scales) that
it has become natural to assume that they will also correctly describe dynamical behaviour
(correspondingly, at low frequencies). The results in [4] demonstrate a complete failure
of the random-matrix model to exhibit physically realistic dynamical behaviour. Secondly,
even if the model in [4] is unphysical, it does show that the Kubo formula is not univ-
ersally valid.

This paper will describe a different random-matrix model, which is of interest for two
reasons. Firstly, the model can give agreement with the Kubo formula in the regime where
the earlier random-matrix model of reference [4] gives anomalous behaviour. This aspect
is explained by an analytical (but non-rigorous) theory. Secondly, numerical experiments
show that the model has a regime exhibiting Ohmic dissipation, but having a conductance
which can differ by orders of magnitude from that predicted by the Kubo formula. This is a
significant observation because it indicates that in some systems an experimentally observed
Ohmic response might not be described correctly by the Kubo formula.

General arguments indicate that low-energy excitations of systems of interacting fermions
typically behave as non-interacting quasi-particles. Also, the lifetime for interaction with
phonons diverges as the temperature approaches zero. (These points are discussed clearly in
[5]). At low temperatures the system may be assumed to consist of non-interacting fermions
with single-particle Hamiltonian Ĥ (t). This is the standard model for charge transport in
metals and semiconductors at low temperatures. In this paper I will be concerned exclusively
with this independent-electron approximation. All of the effects which will be described could
be manifest in the dynamics of electrons on short timescales. There is no reason to believe that
they should be destroyed by residual interactions between electrons. For simplicity, I ignore
the existence of electron spin.

The energies of single electrons undergo diffusion in response to a time-dependent
perturbation. The rate of dissipation is proportional to the energy diffusion constant, DE .
This relationship between diffusion and dissipation is described in section 2, together with the
version of the Kubo formula due to Greenwood [6], which is appropriate to the independent-
electron model. Some earlier work discussing the range of validity of the Kubo formula is also
discussed there.

Section 3 introduces the random-matrix model, and estimates its energy diffusion constant.
Section 4 discusses the estimate for the rate of dissipation for this model according to the Kubo
formula. It is shown that these estimates can agree both when the dimensionless parameter η
is large, and when it is small.

The arguments presented in this paper are not mathematically rigorous, and in most cases a
precise formulation would be extremely difficult. Instead, the conclusions are tested by means
of numerical experiments on the random-matrix model. These are discussed in section 5.
Agreement is found for parameter regimes within the validity of the theory given in section 3.
In a regime where this theory does not apply, I find Ohmic dissipation at a rate which does not
agree with the Kubo–Greenwood formula.

In section 6 I will argue that the random-matrix model is closely analogous to the
Anderson model for a particular choice of basis. The limit of weak disorder in the Anderson
model corresponds to the regime in the random-matrix model for which the Kubo formula
holds. The case in which the site energies are comparable to the hopping amplitudes
corresponds to the crossover point in the present model, where the Kubo formula starts to
fail.

I will use equals signs throughout this paper, but it will be clear from the context that many
of the relations are approximate.
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2. Summary of earlier work

2.1. Energy diffusion and dissipation

The approach used here will be to determine the conductance by calculating the rate of
dissipation. A simple formula can be used to calculate the rate of dissipation by a system
of independent fermions at zero temperature. This relation is based upon the observation that
the single-particle energies evolve diffusively: their change in energy 	E(t) after the action
of a perturbation over time t satisfies

〈	E2(t)〉 = 2DEt. (2.1)

In the independent-electron model, this result leads to a simple but powerful picture of the
mechanism for dissipation: diffusion of electrons from filled states below the Fermi energy
into empty states above the Fermi energy results in an irreversible increase in the energy of
the system. Provided that the temperature is sufficiently low that the variation of the diffusion
constant and density of states in an interval of width kBT around the Fermi energy may be
neglected, the rate of dissipation is

dE

dt
= ρDE (2.2)

where ρ is the single-particle density of states. Both ρ and DE are evaluated at the Fermi
energy.

To the best of my knowledge, the first time that the existence of the energy diffusion
relation (2.1) was explicitly remarked upon was in a paper by Ott [7]. Its use to compute the
rate of dissipation using (2.2) was first described in [3, 8]. The formula (2.2) is a powerful tool
for understanding dissipation because it shows that this problem is directly linked to energy
diffusion, which in many circumstances is much easier to calculate.

The treatment of open quantum systems, where the number of particles is not fixed, can
involve problematic assumptions about the role of the environment. It is possible to avoid
having to represent electrons entering and leaving the sample by considering a system in the
form of a loop, which is threaded by a magnetic flux, X(t). The rate of change of the flux,
Ẋ, is the electromotive force acting around the loop. If the response of the loop is Ohmic,
the current flowing around the loop is I = �Ẋ where � is the conductance. The rate at
which energy is dissipated is dE/dt = I Ẋ. Comparison with (2.2) shows that in the case of
Ohmic dissipation the energy diffusion constant is proportional to Ẋ2, and is related to the
conductance as follows:

DE = �

ρ
Ẋ2. (2.3)

2.2. The Kubo–Greenwood formula

Early theories for electrical conductance were essentially classical, and for many years there
was uncertainty about the form of a fully quantum mechanical theory. Kubo [1] gave
expressions which can be recognized as a natural quantum mechanical extensions of classical
linear response theory. These have become the accepted basis for quantum mechanical
calculations of electrical conductance. These formulae are very general, but are somewhat
formal, and it is not immediately clear how they should be evaluated.

Later Greenwood [6] gave a concrete formula for the electrical conductance for electrons
treated as independent fermions moving in a static disordered potential. This formula is often
referred to as the ‘Kubo–Greenwood formula’. It expresses the conductance �(ω) in terms of
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matrix elements jnm of the current operator:

�(ω) = −πh̄
∑
n,m

|jnm|2 ∂f
∂E

(En)δ(h̄ω − En + Em). (2.4)

Here ω is the frequency of the electric field, and f (E) is the single-particle occupation
probability, which would normally be the Fermi–Dirac distribution function. It is the Kubo–
Greenwood formula which is usually the basis for a concrete calculation of the residual
conductance. The matrix elements are evaluated in the basis formed by the eigenstates |φn〉 of
the Hamiltonian. Spin degeneracy has been ignored in writing this expression.

If the electric field is introduced as a time-dependent flux in a loop, the matrix elements of
the current operator appearing in (2.4) are matrix elements of the generalized force ∂H/∂X:

jnm = (∂XH)nm ≡ 〈
φn

∣∣∂Ĥ
∂X

∣∣φm〉
(2.5)

where the states |φn〉 are the eigenstates of Ĥ (X). The Kubo–Greenwood formula may be
expressed in terms of a statistic characterizing the variance σ 2 of these matrix elements, which
is a function of the energies of the two states:

σ 2(E,	E) ≡ 1

ρ2(E)

〈∑
nm

|(∂XH)nm|2δ(	E − En + Em)δ(E − 1
2 (En + Em))

〉
. (2.6)

This function will be characterized by two parameters: σ 2
0 is its value at 	E = 0, and its

‘support’ (the magnitude of the interval over which it differs significantly from zero) is 	Ec.
The angle brackets denote a suitable averaging procedure; in the case of the random-matrix
model this is simply the ensemble average.

I will consider only the case where the flux X(t) increases linearly with time, so the
limit ω → 0 should be taken in order to obtain the DC conductance. The Kubo–Greenwood
formula can be used to deduce an expression for the energy diffusion constant, DE . In the
low-temperature and low-frequency limits, equations (2.3) and (2.4) imply that

DE = πh̄ρ(EF)σ
2(EF, 0)Ẋ2. (2.7)

If the Kubo–Greenwood formula is correct, the energy diffusion constant must be given by (2.7).

2.3. Earlier work concerning the validity of the Kubo formula

The derivation of the Kubo–Greenwood formula is essentially perturbative. The conditions
for the validity of a quantum mechanical perturbation theory are potentially very stringent,
because in macroscopic systems the separation of energy levels is extremely small. It is
desirable to have an independent demonstration that the energy diffusion constant is correctly
given by (2.7).

For systems which exhibit classical behaviour, this has been done. The energy diffusion
constant was calculated for classical systems by Ott [7], who showed that it is related to the
force–force correlation function:

DE = 1
2 Ẋ

2
∫ ∞

−∞
dt

〈
∂H

∂X
(t)

∂H

∂X
(0)

〉
E

(2.8)

where the average 〈· · ·〉E is a microcanonical average at energy E. A semiclassical trace
formula [9] relates the force–force correlation function to the matrix element variance:

σ 2(E,	E) = 1

2πh̄ρ

∫ ∞

−∞
dt exp(i	E t/h̄)

〈
∂H

∂X
(t)

∂H

∂X
(0)

〉
E

. (2.9)
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Combining (2.8) and (2.9) reproduces (2.7). This justifies the use of the Kubo–Greenwood
formula in systems where the electrons behave semiclassically. It is however desirable to have
an entirely quantum mechanical calculation of the energy diffusion constant.

Reference [4] discusses an attempt to do this. It models the adiabatic form of the
Schrödinger equation by a stochastic differential equation. This model leads to equation
(2.7) in the limit where

η ≡ h̄ρσ0Ẋ/	Ec � 1. (2.10)

When η  1, the energy diffusion constant is predicted to be much smaller than would be
obtained from (2.7), and non-Ohmic. This prediction was confirmed by numerical experiments
on a random-matrix model, but it was also pointed out that the results are unphysical in the
context of electrical conduction, because the parameter η is large in typical experimental
situations. One conclusion is that the model used in this study, a version of Wigner’s
banded random-matrix ensemble, has some pathological features. Another is that the Kubo–
Greenwood formula is not universally applicable. The conditions under which the Kubo–
Greenwood formula is applicable in purely quantum systems remain unclear.

Another case in which dissipation is not described by (2.7) occurs when Landau–Zener
transitions are the mechanism for transitions between states. This was first proposed as
a mechanism for dissipation by Hill and Wheeler [10], and was characterized using the
diffusion–dissipation formula in [3]. The Landau–Zener mechanism would be observable
only in microscopic systems subjected to large, low-frequency perturbations.

3. Energy diffusion in a random-matrix model

3.1. A random-matrix model

The Hamiltonian Ĥ (X) is an N ×N matrix with elements Hij (X):

Hij (X) = cos(X + φi)δij + εVij . (3.1)

Here φi are random phases which are uniformly distributed on the interval [0, 2π ], ε � 1 is
a coupling constant and Vij are elements of a real symmetric random matrix, with diagonal
elements zero, and with elements in the upper triangle independently and identically distributed.
The distribution of the Vij will be assumed to be Gaussian, with mean value zero and
variance unity.

The eigenstates when ε = 0 are denoted |χi〉. The wavefunction is expanded in this basis:

|ψ(t)〉 =
N∑
n=1

an(t) exp[−iθn(t)]|χn〉 (3.2)

where an(t) are coefficients determining the wavefunction. The phases θn are

θn(t) = 1

h̄

∫ t

0
dt ′ En(X(t ′)) (3.3)

where

En(X) = cos(X + φn) (3.4)

are the eigenvalues of the diagonal part of Ĥ (X). Note that the states |χn〉 are independent of
X (in the case where the En(X) are degenerate, the |χn〉 are defined to be independent of X).
For simplicity, it will be assumed that the rate of change of X(t) is constant:

X(t) = Ẋt. (3.5)
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IfX(t) is interpreted as the magnetic flux threaded through a loop, Ẋ is the electromotive force
acting around the loop.

Substituting (3.2) into the Schrödinger equation, ih̄ ∂t |ψ〉 = Ĥ |ψ〉, and multiplying by
exp[iθn(t)]〈χn|, leads to the following equation of motion for the coefficient an(t):

ȧn = − iε

h̄

N∑
m=1

Vnm exp[i(θn − θm)]am. (3.6)

This is the equation of motion which will be solved approximately to produce an estimate of
the energy diffusion constant.

The density of states ρ will be required. In the limit ε → 0, the spectrum lies in the
interval [−1, 1] with density of states

ρ(E) = N

π

1√
1 − E2

. (3.7)

3.2. Energy diffusion constant

Equation (3.6) will be treated perturbatively, in the following sense. The change 	an of an
which occurs between zero time and time 	t will be calculated by assuming that all of the am
may be regarded as constants over the interval 	t . The change in the coefficients is then

	an = − iε

h̄

N∑
m=1

Vnmam

∫ 	t

0
dt exp

[
i
(
θn(t)− θm(t)

)]
. (3.8)

The integrals are dominated by contributions from times where

d

dt

(
θn − θm

) = 0 = En − Em (3.9)

corresponding to points where levels cross (in this model, the levels cross with slopes which
are equal in magnitude but opposite in sign: dEn/dX = −dEm/dX). The time at which (3.9)
is satisfied for levels n and m will be denoted tnm. Also, define %nm = θn(tnm) − θm(tnm).
Then, if τ = t − tnm,

	θnm(t) ≡ θn(t)− θm(t) = %nm +
1

2h̄

(
dEn
dt

− dEm
dt

)
τ 2 + O

(
τ 3

)
. (3.10)

The cubic term will be neglected. With this approximation, the integrals appearing in (3.8) are

Inm =
∫ 	t

0
dt exp[i(θn(t)− θm(t)] ∼ exp[i%nm]

∫ ∞

−∞
dτ exp[iAẊτ 2/h̄]

= exp[−i(%nm ± π/4)]

√
πh̄

AẊ
(3.11)

where A is the magnitude of the slope,

A = dE
dX

= sin(cos−1 E) =
√

1 − E2 (3.12)

and where the sign in (3.11) is negative if dEn/dX is positive. If there is no level crossing
between En and Em in time 	t , the integral Inm is negligible and is set equal to zero.

In first-order perturbation theory the expression for the change in the amplitudes an may
be written as

	an =
N∑
n=1

Fnmam Fnm = − iε

h̄
VnmInm (3.13)
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but this approximation does not conserve probability. An approximation which does conserve
probability is obtained by writing

an(t + 	t) =
∑
m

Unmam(t) (3.14)

where the unitary operator Û = {Unm} is obtained by exponentiating the operator F̂ with
matrix elements Fnm:

Unm = {exp[F̂ ]}nm = δnm + Fnm + 1
2

∑
k

FnkFkm + O(F 3). (3.15)

The probability of reaching the state with index n at time t + 	t is then

Pn(t + 	t) = 〈|an(t + 	t)|2〉 =
∑
m

∑
m′

〈
UnmU

∗
nm′am(t)am′(t)

〉 ∼
∑
m

〈|Unm|2〉Pm(t) (3.16)

where it has been assumed that the am(t) are uncorrelated with each other, and with the elements
Unm. The transition probability from state m to state n is

〈|Unm|2〉 =
〈
δnm + Fnm + F ∗

nm + |Fnm|2 + 1
2

∑
k

FnkFkm + F ∗
nkF

∗
km

〉
+ O(F 3)

= δnm + 〈|Fnm|2〉 + Re
∑
k

〈FnkFkm〉 + O(F 3)

= δnm + 〈|Fnm|2〉 − δnm
∑
k

〈|Fnk|2〉 + O(F 3). (3.17)

The cubic term is negligible. Subtracting Pn(t) from Pn(t + δt), and dividing by 	t , gives a
rate equation for the probabilities:

dPn
dt

=
∑
m

Rnm(Pm − Pn) (3.18)

where the rate constants Rnm are

Rnm =
〈|Fnm|2〉
	t

. (3.19)

When the levels with indices n and m cross, the mean squared magnitude of the factors
εVnmInm/h̄ appearing in (3.13) is equal to πε2/AẊh̄. The mean value in the numerator of
(3.19) is obtained by multiplying this by the expected number of level crossings in the interval
	t . This latter factor is equal to r(E)	t , where

r(E) = N

π
Ẋ (3.20)

is the rate at which any given level is crossed. The rate of transition to states with an opposite
sign of the slope dE/dX is therefore

R = Nε2

h̄
√

1 − E2
(3.21)

at energy E. Note that this expression is independent of the indices n, m, and of Ẋ.
Now consider how to calculate the energy diffusion constant. When the unperturbed

energies En(X) of two basis states cross, the slopes dEn/dX are equal and opposite, with
magnitude A(E). An electron makes random transitions between these states. The change in
the energy of an electron is

	E(t) = Ẋ

∫ t

0
dt ′

dE

dX
(t ′) = A(E)Ẋ

∫ t

0
dt ′ s(t ′) (3.22)
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where s(t) is the sign of the slope at time t , and where it is assumed that 	E(t) is small
compared with the support of the spectrum. The variance of 	E(t) may be approximated by

〈	E2(t)〉 ∼ Ẋ2A2(E)t

∫ ∞

−∞
dτ 〈s(τ )s(0)〉. (3.23)

(This expression is valid provided that t is much greater than the support of the correlation
function). Now

C(τ) = 〈s(τ )s(0)〉 = (+1)Psame + (−1)Pdiff (3.24)

where Psame is the probability that the slope has the same sign at time τ as at time 0, and Pdiff

is the probability that the signs differ. The number n of sign changes in time τ has a Poisson
distribution:

P(n, τ) = (Rτ)n

n!
exp(−Rτ) (3.25)

so, for positive τ ,

C(τ) =
∞∑
n=0

(−1)n
(Rτ)n

n!
exp(−Rτ) = exp(−2Rτ). (3.26)

The energy diffusion constant is therefore

DE = 〈	E2(t)〉
2t

= 1
2 Ẋ

2(1 − E2)

∫ ∞

−∞
dτ exp(−2R|τ |). (3.27)

Substituting the rate constant from (3.21):

DE = (1 − E2)3/2h̄

2Nε2
Ẋ2. (3.28)

Equation (3.28) is one of the central results of this paper. It is proportional to Ẋ2, indicating
that the dissipation is Ohmic in this model.

This calculation made several significant assumptions. Firstly, it was assumed that the
response is perturbative, in the sense that the transition probability in the basis which was
used is small compared to unity, or equivalently that 	an is small. This requires that the
transition rate (3.21) multiplied by the time τ over which the integrals in (3.11) converge,
namely τ ∼ (h̄/AẊ)1/2, is small:

Rτ ∼ Nε2

A

√
h̄AẊ

� 1. (3.29)

Secondly, it was assumed that the integral over the phase factor is dominated by the region
close to the stationary phase point where the quadratic approximation in (3.10) is valid. This
requires

A  Ẋh̄. (3.30)

Also, it was assumed that the energy levels are close to those of the unperturbed system, which
requires

ε � 1. (3.31)

Another assumption was that the time required to ‘scatter’ an electron from an increasing
to a decreasing level, R−1, is small compared to the timescale over which the energy of the
level changes by an amount comparable to the width of the spectrum, τ1 ∼ (AẊ)−1. This
condition is

Rτ1 ∼ Nε2

h̄A2Ẋ
� 1. (3.32)
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The inequalities (3.29) to (3.32) are at least sufficient for the theory to apply. Note that (3.29),
(3.30) and (3.31) taken together imply that

Nε2

A
� 1. (3.33)

Numerical experiments (reported in section 5) show that this is a necessary condition for (3.28)
to hold.

4. Evaluation of the Kubo–Greenwood formula

4.1. Perturbative case

This section discusses the calculation of the variance of matrix elements defined by (2.6). The
estimate for this statistic depends upon the magnitude of the perturbation parameter ε. In the
case where ερ � 1, the eigenstates |φn〉 contain significant admixtures of only one or two of
the basis states |χn〉. In this case, the matrix elements are approximately

(∂XH)nm = εAVnm√
A2 δX2 + ε2|Vnm|2

= εAVnm

	E
. (4.1)

Here δX = X − X0, where X0 is the parameter value for which |En − Em| is smallest, and
A = dEn/dX. This expression is valid when En ∼ Em; the matrix elements are negligible
when this condition is not satisfied.

First consider the form of σ 2(E,	E) if all of the matrix elements Vnm have the same
magnitude, V . The average required to calculate (2.6) can be taken as an average over X, and
can be written in the form

σ 2(E,	E) = 1

ρ 	X

∫ 	X

0
dX |∂XHnm|2δ(	E − En + Em) (4.2)

where 1  	X  1/N and Em is taken to be the closest energy to En at any position X.
Recalling that the frequency of crossings of the unperturbed levels is given by (3.20), and
using (4.1):

σ 2(E,	E) = ε2A2V 2

	E2

	N

ρ 	X

∫
dX δ(	E(X)− En + Em)

= 2ε2A3V 2

	E2

∫ ∞

−∞
dX δ(X −X0)

1

|∂X 	E| (4.3)

where 	N is the number of crossings in the interval 	X, and X0 is one of the two parameter
values at which En − Em = 	E. Now

∂X 	E = ∂X
(√

A2X2 + ε2V 2
) = A

√
	E2 − ε2V 2

	E
. (4.4)

This gives

σ 2(E,	E) = 2ε2A2V 2

	E
√
	E2 − ε2V 2

. (4.5)

This formula applies if all of the matrix elements V are identical. In the case of interest, the
elementsV are Gaussian distributed, with probability distributionP(V ) = exp(−V 2/2)/

√
2π .

The variance of the matrix elements of the current is

σ 2(E,	E) = 2ε2A2

	E2

∫ ∞

−∞
dV P (V )

V 2√
1 − ε2V 2/	E2

= 2A2

(
ε2

	E2

)
F(	E/ε) (4.6)
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where

F(x) = 2√
2π

∫ x

0
dy

y2√
1 − y2/x2

exp(−y2). (4.7)

The function F(x) has the following limits:

lim
x→∞F(x) = 1 lim

x→0
F(x)/x3 = π

4
. (4.8)

4.2. Non-perturbative case

Next estimate σ 2(E,	E) for the case where ε is sufficiently large that the eigenstates |φn〉 are
admixtures of many of the |χn〉 basis states. Write

|φn〉 =
N∑
j=1

C
(n)
j |χj 〉. (4.9)

It will be assumed that the coefficients C(n)
j are significant only when En ∼ Ej . In this case

the required matrix elements may be approximated as follows:

(∂XH)nm = A(En)
∑
i

siC
(n)
i C

(m)
i (4.10)

where si is the sign of ∂XEi . The variance of matrix elements will be estimated as follows:

〈|(∂XH)nm)|2〉 = A2
∑
i,j

〈
sisjC

(n)
i C

(n)
j C

(m)
i C

(m)
j

〉 ∼ A2
∑
i

〈|C(n)
i |2〉〈|C(m)

i |2〉 (4.11)

where in writing the second equality it has been assumed that the C(n)
i are independent of

each other, and of the signs si . Equation (4.11) is expressed in terms of the probability
P
(n)
i = 〈(C(n)

i )2〉 that a particle in the nth eigenstate is in the ith basis state. Perturbation theory
indicates that the coefficients C(n)

i are approximately εVni/(En − Ei ) when the denominator
is sufficiently large that the magnitude of this coefficient is small. This is consistent with the
local density of states taking a Lorentzian form

P
(n)
i = ε2

α2 + 	E2
	E = En − Ei (4.12)

for some constant α. A quite general argument supports the use of a Lorentzian function [11].
Normalizing so that the sum of the P (n)

i is unity determines the value of α:

α = πε2ρ = Nε2

A
. (4.13)

The statistic σ 2(E,	E) is now estimated using (4.11):

σ 2(E,	E) = ρA2
∫ ∞

−∞
dE′ 1

(περ)2 +
[
(	E − E′)/ε

]2

1

(περ)2 + (E′/ε)2
. (4.14)

The function σ 2 is therefore also a Lorentzian:

σ 2(E,	E) = 2A2ε2

	E2 + (2πρε2)2
(4.15)

where A and ρ are evaluated at energy E. Equation (4.15) is valid provided ρε  1 and
ρε2 � 1.
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4.3. Levels fully mixed

The estimate (4.15) applies when the eigenstates are superpositions of many basis states,
but the basis states with significant coefficients are drawn from those with a small range of
unperturbed energies. When ε2ρ  1, the eigenstates are admixtures of all of the basis states,
and P (n)

i ∼ 1/N . In this limit, all of the matrix elements of the current operator have the same
magnitude. Assuming that σ 2 is independent of E and 	E, its value can be deduced from a
sum rule:

tr

[(
∂Ĥ

∂X

)2]
= 1

2N = N2σ 2(E,	E) (4.16)

from which it follows that σ 2 ∼ 1/2N .

4.4. Comparison with energy diffusion formula

Evaluation of the Kubo formula for the DC conductance requires an estimate of σ 2(EF,	E)

in the limit 	E → 0. There is often a difficulty with defining this limit: because of level
repulsion effects, the function σ 2(E,	E) has an anomalous behaviour when 	E � 1/ρ. In
most circumstances the support 	Ec of this function greatly exceeds 1/ρ, and the relevant
value of σ 2 is that obtained in the plateau where 1/ρ � 	E � 	Ec.

In the first of the cases considered above, where εN � 1, the support of σ 2(E,	E) is
1/ρ, and there is no plateau region. The Kubo–Greenwood formula does not give a meaningful
prediction for the DC conductance in this case, despite the fact that (3.28) can be applicable.

In the final case considered above, where 1  ε2  1/N , the estimate σ 2
0 = 2/N leads

to an estimate for the energy diffusion constant which exceeds (3.28) by a factor ∼Nε2/A4.
However, the condition ρε2  1 which defines this case is equivalent to requiring the converse
of (3.33). The theory of section 3.2 need not apply. Numerical results on this case are discussed
in section 5. They show that in this regime the diffusion constant is lower than that predicted
by (3.28).

In the second case, where εN  1 but ε2N � 1, the plateau value of σ 2 is

σ 2
0 = 2A2ε2

(2πρε2)2
= A4

2N2ε2
. (4.17)

Substituting (3.7) and this expression into (2.7) leads to an expression which is identical to
the prediction obtained in section 3 (equation (3.28)). The support in 	E of the function
σ 2(E,	E) is 	Ec = 2πρε2. The value of the parameter η which played a crucial role in [4]
is then

η = ρσ0h̄Ẋ

	Ec
= 1

2
√

2π

A2

Nε2

Ẋ

ε
. (4.18)

The conditions (3.29) to (3.33) allow η to be either large or small. This random-matrix model
need not, therefore, exhibit any anomalous behaviour when η  1.

5. Numerical experiments on the random-matrix model

5.1. Computations of energy diffusion

A numerical estimate of the energy diffusion constant was obtained by solving the time-
dependent Schrödinger equation, using a fourth-order Runge–Kutta method. The program
integrated the standard representation of the Schrödinger equation, in which the basis states
are completely fixed, rather than the form (3.6) (in which the phase of the basis states evolves).



8098 M Wilkinson

A set of N initial states were integrated. These were eigenstates |φm(0)〉 of the Hamiltonian at
time t = 0, chosen to be close to the centre of the spectrum. At regular intervals the state |ψ(t)〉
is projected into the basis formed by the instantaneous eigenstates, to determine coefficients
cn,m defined by

|ψ(t)〉 =
N∑
n=1

cn,m(t)|φn(Ẋt)〉. (5.1)

The coefficients cn,m(t) are elements of the evolution operator expressed in the adiabatic basis.
They are used to calculate the variance of the displacement from the original state:

	(t) ≡ 1

N
∑
m

N∑
n=1

|cn,m(t)|2(n−m)2 (5.2)

where the sum over m runs over N states close to the centre of the spectrum.
I used h̄ = 1 in all calculations, and the number of propagated states N was never larger

than N = N/10. The computations used 14-figure arithmetic, and the time step of the
numerical integration was δt = 0.04 or smaller.

The function 	(t) defined in (5.2) typically grows quadratically for a short period, and
then increases linearly until it starts to saturate, at a value which is approximately N2/12. An
example is shown in figure 1. The linear region of the plot was fitted to a straight line using a
least-squares method. This fit is also shown for the example in figure 1. The slope S of this
linear fit is used to estimate the (numerical) energy diffusion constant, in terms of level index,
D(num)
n = S/2. (The subscript n indicates that this diffusion constant is defined through the

second moment of the level index n, via the relation 	(t) = 〈	n2〉 ∼ 2Dnt .) This is related
to the energy diffusion constant introduced earlier by Dn = ρ2DE . The values of D(num)

n are
given in table 1.

   0.0   50.0    0.0 
   0.0 

5000.0 

   0.0 

∆     t   (  )

t

Figure 1. A plot of 	(t) = ρ2〈	E2(t)〉, showing the quadratic initial response followed by a
diffusive spread level of occupation. A fit to the linear region is shown. The parameter values were
N = 400, ε = 0.01, Ẋ = 0.02.
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Table 1. Tabulation of the energy diffusion constant. The numerically determined value is D(num)
n

and f = D
(num)
n /D

(th)
n is the ratio of this value to the theoretical prediction, equation (3.28). The

results show that the theoretical prediction is accurate only when x = Nε2 � 1, but that D(num)
n is

approximately proportional to Ẋ2, indicating Ohmic response, for all of these cases.

N ε Ẋ D
(num)
n x f

100 0.1 0.2 13.4 1 0.668
160 0.1 0.2 18.1 1.6 0.564
250 0.4 0.4 1.85 40 0.148
250 0.4 0.2 0.532 40 0.168
250 0.2 0.8 57.1 10 0.286
250 0.2 0.4 14.8 10 0.296
250 0.2 0.2 3.95 10 0.312
250 0.2 0.1 1.04 10 0.333
250 0.2 0.05 0.252 10 0.322
250 0.2 0.025 0.063 10 0.320
250 0.1 0.2 21.6 2.5 0.431
250 0.1 0.1 6.75 2.5 0.538
250 0.1 0.05 1.72 2.5 0.549
250 0.1 0.025 0.433 2.5 0.554
250 0.05 0.2 131 0.625 0.655
250 0.05 0.1 37.1 0.625 0.742
250 0.05 0.05 8.6 0.625 0.684
250 0.025 0.05 40.9 0.156 0.818
250 0.01 0.01 9.6 0.025 0.764
250 0.01 0.005 2.75 0.025 0.882
250 0.01 0.0025 0.75 0.025 0.954
250 0.01 0.00125 0.193 0.025 0.986
400 0.01 0.04 223 0.04 0.695
400 0.01 0.02 63.9 0.04 0.788
400 0.005 0.005 16.1 0.01 0.805
400 0.005 0.0025 4.31 0.01 0.862
400 0.005 0.00125 1.23 0.01 0.984
500 0.4 3.2 170 80 0.105
500 0.4 1.6 43.6 80 0.107
500 0.4 0.8 10.9 80 0.107
500 0.4 0.4 2.91 80 0.116
500 0.4 0.2 0.790 80 0.125
500 0.4 0.1 0.231 80 0.146
500 0.01 0.01 21.5 0.05 0.858
500 0.02 0.1 439 0.2 0.703

1000 0.4 0.1 0.276 160 0.0871
1000 0.5 0.5 3.32 250 0.0655
1000 0.5 0.25 0.883 250 0.0697

Table 1 also compares the empirically determined diffusion constant with the theoretical
estimatesD(th)

n from (3.28). Setting h̄ = 1, and alsoA = 1 because I have selected states close
to the centre of the spectrum, this is

D(th)
n = NẊ2

2π2ε2
. (5.3)

The numerically determined diffusion constants were always lower than this theoretical
prediction. This is partly because the theoretical diffusion constant is a function of energy,
and the quoted theoretical values are the maximum ones. Also, the rate of growth of 	(t)
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decreases as this statistic approaches its saturation value of N2/12. But it was clear that even
if a correction were made for these effects, the diffusion constant would be lower than (5.3).
The agreement with (5.3) is satisfactory when Nε2 � 1 (i.e. when (3.33) is satisfied). When
Nε2  1 most of my numerical results were fairly consistent with the approximate expression

Dn = K
√
N

2π2ε
Ẋ2 (5.4)

where the value of the constant K is approximately unity.
The ratio f = D(num)

n /D(th)
n is plotted as a function of x = Nε2 in figure 2, with straight

lines corresponding to (5.3) and (5.4) (with K = 1) superposed. If points corresponding to
given values of N and ε fall on top of each other, that is an indication that DE ∝ Ẋ2. The
points do exhibit some vertical scatter, but the deviations from Ohmic response are usually
small. For example, there are six data points at N = 250 and ε = 0.2, with Ẋ changed by a
factor of two between successive points. If the response of the system is Ohmic, the diffusion
constant is expected to change by a factor of 46−1 = 1024 between the largest and smallest
values. The measured ratio was 906, consistent with DE ∝ Ẋ1.96. Most of the data points
cluster quite tightly about a single curve, but the scatter appears greater than that accounted
for by the error in fitting the slope of 	(t).

   -5.0     6.0     0.0 
   -3.0 

    0.5 

    0.0 

fln

xln

Figure 2. A plot of the ratio of the numerical diffusion constant to the theoretical expression given
by (3.28). The ratio f = D

(num)
n /D

(th)
n is close to unity when x = Nε2 is small, but when x is

large, it is approximated by 1/
√
x (solid line).

5.2. Computations of the matrix element variance

The matrix elements (2.5) were obtained numerically by the following method. The
Hamiltonian was diagonalized, and the diagonal matrix δij dEi (X)/dX was transformed into
the basis formed by the eigenfunctions of Ĥ (X). The statistic σ 2 (defined by (2.6)) was
estimated by taking elements corresponding to states with energies En, Em falling into bins
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satisfying 1
2 (En + Em) = E ± 1

2 δE and En − Em = 	E ± 1
2 δ 	E

′, and the results were
averaged over N ′ realizations of the random matrix.

The function σ 2(0,	E) is plotted in figure 3 for the case N = 400, ε = 0.01. Here I
used states from the centre of the spectrum, E = 0, with a tolerance δE = 0.4. The tolerance
for 	E was δE′ = 0.012, and the number of realizations was N ′ = 25. This case satisfies
Nε � 1 but Nε2 � 1, so it corresponds to the regime considered in section 4.2, and is
expected to have a Lorentzian form. The fitted Lorentzian curve has parameters σ 2

0 = 0.0263
and 	Ec = 0.0885. These agree favourably with the theoretical predictions obtained from
(4.15), namely σ 2

0 = 1/32 and 	Ec = 0.08.

   -0.3     0.3     0.0 
  0.00 

  0.03 

  0.00 

σ 2

E∆
Figure 3. A plot of σ 2(0,	E), compared with a Lorentzian fit. The parameter values were
N = 400, ε = 0.01.

6. Discussion of similarity to the Anderson model

One motivation for the choice of the random-matrix model introduced in section 3 is that its
matrix elements are similar to those of the Anderson Hamiltonian (tight-binding model with
site disorder), expressed in the Bloch state basis. For simplicity, the discussion below is for
the two-dimensional case, but the analogy extends to any dimension. In two dimensions states
are believed to be always localized, but unless the disorder is strong the localization length is
very large, and for practical purposes localization may be ignored, as is done in the following
discussion.

The Hamiltonian for the Anderson model will be denoted by Ĥ (5) = Ĥ0(5) + V̂ ,
where Ĥ0(5) is a tight-binding Hamiltonian on a finite (Nx ×Ny) lattice with torus topology,
enclosing a flux 5 through one loop, and V̂ is the random fluctuation of the site energies.
The dependence of the Hamiltonian on magnetic flux is incorporated by requiring that the
matrix elements of the Hamiltonian Ĥ0(5) describing hopping from site r = (i, j) to the
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neighbouring site r′ = (i + 1, j) are of the form

(H0)r,r′ = exp[ie5(t)/Nxh̄]. (6.1)

The Hamiltonian Ĥ0(5) is diagonal in the basis formed by the Bloch states |φ(k)〉, with
wavefunctions

〈r|φ(k)〉 = exp(ik · r)√
NxNy

. (6.2)

The wavevectors k lie in the square 0 � kx < 2π , 0 � ky < 2π , taking discrete values with
density NxNy/(2π)2. The diagonal elements in the Bloch state basis are

(H0)k,k′ = δk,k′E(kx − e5/Nxh̄, ky) (6.3)

where E(k) = 2 cos(kx)+2 cos(ky) is the dispersion relation for Bloch states with no magnetic
flux. The diagonal elements are therefore periodic functions of the flux. This is a general-
ization of the form of the diagonal matrix elements of the model in section 3. The matrix
elements of the random potential V̂ are

Vk,k′ = 〈φ(k′)|V̂ |φ(k)〉 = 1

NxNy

∑
r

Vr exp[i(k − k′) · r] (6.4)

where Vr is the random potential at lattice site r. The Vr are assumed to have mean value zero
and the variance is denoted by 〈V 2〉. The central-limit theorem implies that when N = NxNy

is large, the matrix elements in (6.4) have a Gaussian distribution. The correlation function of
these matrix elements is

〈Vk1,k2Vk3,k4〉 = 〈V 2〉
NxNy

δk1+k3−k2−k4 . (6.5)

The matrix elements Vk,k′ are similar to those of the random-matrix model introduced in
section 3, in that they all have the same variance. They differ by having correlations, which
are not present in the random-matrix model.

Now consider which parameter regime of the random-matrix model corresponds to the
Anderson model. The dimension of the random matrix corresponds to the number of sites
in the Anderson model: N = NxNy . The parameter X corresponds to the magnetic flux:
X = e5/Nxh̄. Choosing ε so that the variance of the off-diagonal elements of the two models
are identical requires

Nε2 = 〈V 2〉. (6.6)

This relation shows that the Anderson model with weak disorder corresponds to the regime
discussed in section 4.2, for which the Kubo–Greenwood formula holds. The regime of
moderate disorder corresponds to the crossover point, where the Kubo–Greenwood formula
starts to fail. It would not be appropriate to deduce anything about the case of strong disorder,
〈V 2〉  1, because the wavefunctions become well localized in that case.

7. Conclusions

The model introduced in this paper has two interesting dynamical properties. Firstly, in
contrast to other random-matrix models (discussed in [4]), it does not show a catastrophic
breakdown of Ohmic conduction when the parameter η becomes large. This observation
will help clarify which features of the Hamiltonian lead to pathological behaviour. Secondly,
numerical experiments show that the model can display Ohmic dissipation with a conductance
which is not given correctly by the Kubo–Greenwood formula. There can be a discrepancy of
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orders of magnitude between the two formulae. This demonstrates that the Kubo–Greenwood
formula is not a universal expression for Ohmic conductance.

A similarity exists between the matrix elements of this model and those of the Anderson
model. The correspondence between these models suggests that the latter should obey the
Kubo–Greenwood formula for small disorder. When the disorder is comparable to the hopping
matrix elements however, there may be a discrepancy between the conductivity predicted by
the Kubo–Greenwood formula and the true value. The analogy between the models only holds
good as far as the crossover regime, so the ratio between the true conductivity of the Anderson
model and the Kubo–Greenwood value need not be large.

The Kubo–Greenwood formula is widely used as a theoretical basis for calculations of
conductivity. There is a satisfying theoretical understanding of a vast range of experiments
on electrical conduction, and it may appear surprising that a fundamental formula should be
challenged. The following points should be made. Firstly, the Kubo–Greenwood formula
can be represented as a quantum mechanical version of a classical linear response theory,
which is beyond doubt (one approach to justifying this was outlined in section 2.3). If the
electrons behave semiclassically the Kubo–Greenwood formula must be valid, because it is
a quantum representation of the classical theory. In many situations the electron motion is
well described by considering motion along classical trajectories, and the only places at which
quantum mechanics enters are via the Pauli exclusion principle and simple interference effects.
Secondly, it should be pointed out that in experimental applications of the Kubo–Greenwood
formula, parameters such as scattering rates are fitted to the data, because disorder in the sample
is not independently measured. In this sense the Kubo–Greenwood formula is therefore not
fully tested experimentally.

There is room for doubt that the Kubo–Greenwood formula gives an accurate evaluation
of the conductance when the electron motion is purely quantum. In this paper a discrepancy
has been dramatically demonstrated for a random-matrix model, and the results suggest that a
similar but less marked discrepancy could exist in the physically realistic Anderson model.
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